Diketahui turunan fungsi f(x) yaitu f'(x) = 6x - 5. Jika grafik fungsi f(x) melalui titik (2,-3), rumus fungsi f(x)=
Pertanyaan
1 Jawaban
-
1. Jawaban dwiafifah68
Jika f'(x) = 6x - 5 dan grafik f(x) melalui titik (2, -3) maka rumus fungsi f(x) adalah f(x) = 3x² - 5x - 5. Simak pembahasan berikut.
Pembahasan
Diketahui:
f'(x) = 6x - 5
grafik f(x) melalui titik (2, -3)
Ditanya: rumus fungsi f(x)
Jawab:
f'(x) menyatakan turunan pertama dari fungsi f(x). Maka untuk mendapatkan rumus fungsi f(x), kita harus mengintegralkan f'(x), atau daat ditulis sebagai berikut:
f(x) = ∫ f'(x) dx
f(x) = ∫ (6x - 5) dx
f(x) = [tex]\frac{6}{1+1}[/tex]x¹⁺¹ - 5x + C
f(x) = [tex]\frac{6}{2}[/tex]x² - 5x + C
f(x) = 3x² - 5x + C
Karena grafik f(x) melalui titik (2, -3) maka subtitusikan titik tersebut kedalam f(x), sehingga diperoleh:
f(x) = 3x² - 5x + C
y = 3x² - 5x + C
-3 = 3(2)² - 5(2) + C
-3 = 3(4) - 5(2) + C
-3 = 12 - 10 + C
-3 = 2 + C
C = -3 - 2
C = -5
Subtitusikan nilai C = -5 kedalam f(x) = 3x² - 5x + C.
∴ Jadi rumus fungsi f(x) tersebut adalah f(x) = 3x² - 5x - 5.
Pelajari lebih lanjut
- Menentukan bentuk integral suatu fungsi https://brainly.co.id/tugas/15522914
- Menghitung integral tertentu https://brainly.co.id/tugas/22688775
------------------------------------------------
Detil jawaban
Kelas: 11
Mapel: Matematika
Bab: Inetgral tak tentu fungsi aljabar
Kode: 11.2.10
Kata kunci: integral, turunan, f(x), f'(x)